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We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input
modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of
a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with
the setups accessible at present since its optical implementation only employs simple linear optical elements
and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with
phase-conjugate input modes proposed by Cerf and Iblisdir �Phys. Rev. Lett. 87, 247903 �2001��, which
utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones
and is regarded as irreversible quantum cloning.
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I. INTRODUCTION

Quantum cloning plays an important role in quantum in-
formation and quantum communication. It has been shown
that quantum cloning might improve the performance of
some computational tasks �1� and it is believed to be the
optimal eavesdropping attack for a certain class of quantum
cryptography �2�. It also opens an avenue for understanding
the concepts of quantum mechanics and measurement theory
further. So the quantum cloning that achieves the optimal
cloning transformation compatible with the quantum no-
cloning theorem has always being a hot research topic. Such
a quantum cloning machine was first considered by Buzek
and Hillery for qubits �3� and later extended to the
continuous-variable �CV� regime by Cerf et al. �4�. CV quan-
tum cloning has been extensively studied in recent years for
its relative ease in preparing and manipulating quantum
states. Theoretical proposals for the experimental implemen-
tations of CV quantum cloning have been proposed �5–8�.

A recent result in the context of measurement has re-
vealed that more quantum information can be encoded in
antiparallel pairs of spins than in parallel pairs �9�. Subse-
quently, the result that a pair of conjugate Gaussian states
can carry more information than by using the same states
twice has been extended to continuous variables �10�. This
result makes it possible to yield better fidelity with the clon-
ing machine admitting antiparallel input qubits or phase-
conjugate input modes, thereby opening a new avenue in the
investigation of quantum cloning. Based on the above prop-
erties, Cerf and Iblisdir put forward a CV cloning transfor-
mation �11� that takes as input N replicas of a coherent state
and N� replicas of its complex conjugate, and produces M
optimal clones of the coherent state and M�=M +N�−N
phase-conjugate clones �anticlones, or time-reversed states�.
This is the first scheme for a phase-conjugate input �PCI�
cloner of continuous variables. Practical experimental real-
ization of the proposed PCI cloner is nonetheless difficult

due to the problems associated with the physical implemen-
tation of the optical parametric amplifier. Recently, a much
simpler but efficient CV quantum cloning machine based on
linear optics and homodyne detection was proposed and re-
alized experimentally by Andersen et al. �12�. Later, this pro-
tocol was extended to various quantum cloning cases, such
as asymmetric cloning �13� and so on �14�. According to the
classification of a quantum clone as irreversible or reversible
in the perspective of quantum-information distribution �15�,
the quantum cloning with linear optics �12� is local and irre-
versible, and the anticlones are lost. Perfect distribution does
not allow losing any of the quantum information of the trans-
mitted unknown state, which means this process is reversible
and the unknown state can be reconstructed in a quantum
system again.

In this paper, we propose a protocol of CV quantum clon-
ing of coherent states with phase-conjugate input modes us-
ing linear optics. The N+N→M quantum cloning machine
yields M identical optimal clones from N replicas of a co-
herent state and N replicas of its phase conjugate. This
scheme is regarded as local and irreversible PCI quantum
cloning because the anticlones are lost. We also show that the
N+N→M irreversible PCI quantum cloning machine may
be changed into the N+N→M +M reversible PCI quantum
cloning machine by the introduction of an Einstein-
Podolsky-Rosen �EPR� entangled ancilla. This shows that the
optimal fidelity of the anticlones requires the maximally EPR
entangled state.

II. 1+1\M IRREVERSIBLE PCI QUANTUM CLONING

The quantum states we consider in this paper are de-
scribed with the electromagnetic field annihilation operator

â= �X̂+ iP̂� /2, which is expressed in terms of the amplitude X̂

and phase P̂ quadrature with the canonical commutation re-

lation �X̂ , P̂�=2i. Without any loss of generality, the quadra-
ture operators can be expressed in terms of a steady state and

a fluctuating component as Â= �Â�+�Â, with variances of

VA= ��Â2� �Â= X̂ or P̂�. The input coherent state and its
phase-conjugate state to be cloned will be described by
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��in�= � 1
2 �xin+ ipin�� and ��in

* �= � 1
2 �xin− ipin��, respectively,

where xinand pin are the expectation values of X̂in and P̂in.
The cloning machine generates many clones of the input
state characterized by the density operator �̂clone and the ex-
pectation xclone and pclone. The quality of the cloning machine
can be quantified by the fidelity, which is the overlap be-
tween the input state and the output state. It is defined by
�16�

F = ��in��̂clone��in�

=
2

��1 + �2X̂clone��1 + �2P̂clone�

�exp	−
�xclone − xin�2

2�1 + �2X̂clone�
−

�yclone − yin�2

2�1 + �2P̂clone�

 . �1�

In the case of unity gains, i.e., xclone=xin, the fidelity is
strongly peaked and changed into

F =
2

��1 + �2X̂clone��1 + �2P̂clone�
. �2�

Let us first illustrate the protocol in the simplest case of
N=N�=1 as shown in Fig. 1. The input coherent state ĉin and
its phase-conjugate state ĉin

* are prepared by an amplitude
modulator and a phase modulator, respectively. The modu-
lated signals on the amplitude modulators are in phase and
the modulated signals on the phase modulators are out of
phase. The input mode ĉin is divided by a variable beam
splitter with transmission rate T and reflectivity rate R. The

reflected output ĉ1r=�Rĉin+�TV̂1, where the annihilation op-

erator V̂1 represents the vacuum mode entering the beam
splitter, is combined with its phase-conjugate state ĉin

* at a
50-50 beam splitter. Then we perform homodyne measure-
ments on the two output beams to achieve the amplitude and
phase quadratures simultaneously. The measured quadratures
are

X̂m =
1
�2

��RX̂cin
+ �TX̂V1

+ X̂cin
* � ,

P̂m =
1
�2

��RP̂cin
+ �TP̂V1

− P̂cin
* � . �3�

We use the measurement outcomes to modulate the ampli-
tude and phase of an auxiliary coherent beam via two inde-
pendent modulators with a scaling factor g �17�. This beam is
then combined at a 99-1 beam splitter with the transmitted
part of mode ĉin, hereby displacing this part according to the
measurement outcomes �17�. Corresponding to the transfor-

mation Â→ D̂+ÂD̂= Â+ �X̂m+ iP̂m� /2 in the Heisenberg repre-
sentation, the displaced field can be expressed as

ĉdisp = 	�1 − R +
g
�2

�R
ĉin − 	�R −
g
�2

�1 − R
V̂1 +
g
�2

ĉin
*†

�4�

where ĉdisp is the annihilation operator for the displaced field.
By choosing g=�2R / �1−R�, we can cancel the vacuum
noise of the displaced field. Then the displaced field is given
by

ĉdisp
c =

1
�1 − R

ĉin +
�R

�1 − R
ĉin

*†. �5�

We can see that Eq. �5� is equal to a phase-insensitive am-
plification with gain G=1/ �1−R�.

In the final step the displaced field is distributed into M
clones �âl�� �l=1,2 , . . . ,M� by a sequence of M −1 beam
splitters with appropriately adjusted transmittances and re-
flectances. Then the output of the cloning machine can be
expressed as

â1� =� 1

M
ĉdisp

c +�M − 1

M
v̂1,

â2� =� 1

M
ĉdisp

c −� 1

M�M − 1�
v̂1 +�M − 2

M − 1
v̂2,



âM−1� =� 1

M
ĉdisp

c −� 1

M�M − 1�
v̂1 −� 1

�M − 1��M − 2�

�v̂2 − ¯ −� 1

3 * 2
v̂�M−2� +�1

2
v̂�M−1�,

âM� =� 1

M
ĉdisp

c −� 1

M�M − 1�
v̂1 −� 1

�M − 1��M − 2�
� v̂2

− ¯ −� 1

3 * 2
v̂�M−2� −�1

2
v̂�M−1�, �6�

where v̂k �k=1,2 , . . . ,M −1� refer to the annihilation opera-
tors of the vacuum mode entering BS1,BS2 , . . . ,BSM−1, re-
spectively. Equation �6� shows that each output mode con-

FIG. 1. A schematic diagram of 1+1→M irreversible PCI
quantum cloning. BS, beam splitter; LO, local oscillator; AM, am-
plitude modulator; PM, phase modulator; AUX, auxiliary beam.
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tains the displaced field ĉdisp
c with a factor of 1 /�M. Note

that both terms ĉin and ĉin
*† in Eq. �5� contribute to the total

coherent signal with a factor of 1 /�1−R+�R /�1−R and to
the noise variances with �1+R� / �1−R� in the output ĉdisp

c .
Since each output cloner should include one unit of the input
coherent state, the R must satisfy

1
�1 − R

+
�R

�1 − R
= �M . �7�

R can be easily determined by solving the above equation
and is given by

R =
�M − 1�2

�M + 1�2 . �8�

According to Eqs. �5�, �6�, and �8�, the variances of the
clones can be written as

��2X̂al�
� = ��2P̂al�

� =
1

M

1 + R

1 − R
+

M − 1

M
= 1 +

�M − 1�2

2M2 .

�9�

The fidelity can be obtained through Eq. �2�,

F�1
1�→M =

4M2

4M2 + �M − 1�2 . �10�

This procedure is optimal clearly to produce M clones. Now
we compare the fidelity of M clones from the phase-
conjugate input modes with those from two identical repli-
cas. The fidelity of the standard 2-to-M cloning is given by
�18�

F2→M =
2M

3M − 2
. �11�

In the special case M =2, the standard cloning can be
achieved perfectly with fidelity equal to 1 while the phase-
conjugate cloner yields an additional variance which will
lead to a lower fidelity. It is, nonetheless, obvious that the
phase-conjugate cloner yields better fidelity than the standard
cloning when M �3. In the limit of large M→�, we could
see F� 1

1
�→�= 4

5 compared with the standard cloning F2→�

= 2
3 . This shows that more information can be encoded into a

pair of conjugate Gaussian states than by using the same two
states, which has been shown in Ref. �10�. Compared with
the original scheme for continuous-variable quantum cloning
with phase-conjugate input modes proposed by Cerf and Ib-
lisdir �11�, which utilized a nondegenerate optical parametric
amplifier, our scheme loses the anticlones and is regarded as
irreversible PCI quantum cloning.

Now we consider the realistic conditions where the homo-
dyne detector efficiency is not unity. If � expresses the ho-
modyne detector efficiency, the measured amplitude and the
phase quadratures are give by

X̂m =��

2 ��RX̂cin
+ �TX̂V1

+ X̂cin
* � + �1 − �X̂VD1

,

P̂m =��

2 ��RP̂cin
+ �TP̂V1

− P̂cin
* � + �1 − �P̂VD2

, �12�

where X̂VD1
and P̂VD2

are the vacuum noise introduced from
the losses of the homodyne detector. With the measured re-
sults, the displaced field can be expressed as

ĉdisp = 	�1 − R + g��

2
�R
ĉin − 	�R − g��

2
�1 − R
V̂1

+ g��

2
ĉin

*† + �1 − �gX̂VD1
+ �1 − �gP̂VD2

. �13�

By choosing g=�2R /��1−R�, the displaced field is given by

ĉdisp
c =

1
�1 − R

ĉin +
�R

�1 − R
ĉin

*† +�2R�1 − ��
�1 − R��

�X̂VD1
+ P̂VD2

� .

�14�

According to Eqs. �6�–�8�, the variances of the clones can be
written as

��2X̂al�
� = ��2P̂al�

� =
1

M

1 + R

1 − R
+

1

M

2R�1 − ��
�1 − R��

+
M − 1

M

= 1 +
1

�

�M − 1�2

2M2 . �15�

The fidelity can be obtained through Eq. �2�,

F�1
1�→M =

4�M2

4�M2 + �M − 1�2 . �16�

It clearly shows that the fidelity of the clones is degraded due
to the losses of the homodyne detection.

III. N+N\M IRREVERSIBLE PCI QUANTUM CLONING

We now generalize the 1+1→M case to N+N→M irre-
versible PCI quantum cloning, which produces M clones
from N input replicas of a coherent states and N replicas of
its complex conjugate as illustrated in Fig. 2. First, we con-
centrate on N identically prepared coherent states ��� de-
scribed by �âl� �l=1, . . . ,N� into a single spatial mode ĉ1

with amplitude �N�. This operation can be performed by
interfering N input modes in N−1 beam splitters, which
yields the mode

ĉ1 =
1

�N
�
l=1

N

âl �17�

and N−1 vacuum modes. The same method can be used for
the generation of the phase-conjugate input mode ĉ2 with
amplitude �N�* from the N replicas of ��*� stored in the N
modes �bl� �l=1, . . . ,N�, which is expressed as
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ĉ2 =
1

�N
�
l=1

N

b̂l. �18�

Then, ĉ1 and ĉ2 are transported into the cloning machine as
in Fig. 1. The displaced field is given by

ĉdisp
c =

1
�1 − R

ĉ1 +
�R

�1 − R
ĉ2

†. �19�

The terms ĉ1 and ĉ2
† in Eq. �19� contribute to the total coher-

ent signal with a factor of �N�1/�1−R+�R /�1−R� and to
the noise variances with �1+R� / �1−R� in the output ĉdisp

c .
Since each output cloner should include one unit of the input
coherent state, the R must satisfy

�N	 1
�1 − R

+
�R

�1 − R

 = �M . �20�

R can be easily determined by solving the above equation
and is given by

R =
�M − N�2

�M + N�2 . �21�

The variance and fidelity of the � N
N

�→M cloner will be given
by

��2X̂al�
� = ��2P̂al�

� = 1 +
�M − N�2

2M2N
, �22�

F�N
N�→M

=
4M2N

4M2N + �M − N�2 . �23�

Obviously, Eqs. �9� and �10� can be obtained from Eqs. �22�
and �23� for N=N�=1. The result also coincides with that
obtained in Ref. �11�. However, the output anticlones are lost
in this scheme. The advantage of dealing with N pairs of
complex conjugate inputs can still be most easily illustrated
in the limit of an infinite number of clones, M→�; from Eq.

�23� we get F� N
N

�→M =4N / �4N+1� while the standard cloning

machine fidelity F2N→M =2N / �2N+1�.

IV. REVERSIBLE PCI CLONING WITH LINEAR OPTICS
AND EPR ENTANGLEMENT

A scheme for a phase-conjugating amplifier with the non-
linearity put off line was proposed �19�. Employing this pro-
tocol, we show that the N+N→M irreversible PCI quantum
cloning machine as shown in Fig. 2 becomes an N+N→M
+M reversible PCI quantum cloning machine by the intro-
duction of an EPR entangled ancilla �two-mode Gaussian
entangled state� as shown Fig. 3. One half of the entangled
ancilla is injected into the empty port of the variable beam
splitter. Since the noises injected into the empty port of the
variable beam splitter are canceled in the displaced field, the
displaced field does not depend on the injected noises. Thus
the above results for the clones are always valid. The other
half of the entangled ancilla is also displaced according to
the classical measurement outcomes with a scaling factor g1
and is expressed as

êdisp =
g1

�2
�Rĉ1

† +
g1

�2
�1 − Rb̂EPR1

† + b̂EPR2 +
g1

�2
ĉ2. �24�

By choosing g1=�2/ �1−R�, the displaced EPR beam is
given by

êdisp =
�R

�1 − R
ĉ1

† +
1

�1 − R
ĉ2 + �b̂EPR1

† + b̂EPR2� . �25�

The EPR entangled beams b̂EPR1, b̂EPR2 have a very strong
correlation property, such that both their sum-amplitude

quadrature variance ���X̂bEPR1
+ X̂bEPR2

�2�=2e−2r, and their

difference-phase quadrature variance ���ŶbEPR1
− ŶbEPR2

�2�
=2e−2r, are less than the quantum noise limit. In the final step

the displaced EPR beam is distributed into M anticlones �b̂l��
�l=1,2 , . . . ,M� by a sequence of M −1 beam splitters with

FIG. 2. A schematic diagram of N+N→M irreversible PCI
quantum cloning.

FIG. 3. A schematic diagram of reversible PCI cloning with
linear optics and EPR entanglement.

HAIXIA CHEN AND JING ZHANG PHYSICAL REVIEW A 75, 022306 �2007�

022306-4



appropriately adjusted transmittances and reflectances. The
expression of the output anticlones is similar to Eq. �6�. The
variance and fidelity of the anticloner will be given by

��2X̂bl�
� = ��2P̂bl�

� = 1 +
�M − N�2

2M2N
+

2e−2r

M
, �26�

F�N
N�→M

anti
=

4M2N

4M2N + �M − N�2 + 4MNe−2r . �27�

This clearly shows that the optimal fidelity of the anticlones
requires the maximally EPR entangled state r→�. Clearly
reversible PCI cloning with linear optics and EPR entangle-
ment is equivalent to the original scheme for CV PCI quan-
tum cloning proposed by Cerf and Iblisdir �11�, which uti-
lized a nondegenerate optical parametric amplifier.

V. CONCLUSION

In conclusion, we have proposed a much simpler and ex-
perimentally feasible continuous-variable cloning machine of
coherent states with phase-conjugate inputs using linear op-
tics. Compared with the original scheme for continuous-
variable quantum cloning with phase-conjugate input modes
proposed by Cerf and Iblisdir, which utilized a nondegener-

ate optical parametric amplifier, our scheme loses the output
of phase-conjugate clones and is regarded as irreversible
quantum cloning. The protocols described here can be used
in various quantum communication protocols, e.g., for the
optimal eavesdropping in a quantum key distribution
scheme.

Note added in proof. Recently, we noted the similar
scheme was suggested and realized experimentally �20�.
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